REXC series
6REXC300

Feature
- Design life 20 years
- Combine the advantage of lead acid battery and supercapacitor
- Ideal for PSOC cycle application
- High power, rapid charge/discharge
- Reduce sulfation of negative plate, excellent recharge acceptance performance
- Waterproof, anti-salt treatment, shockproof module installation design
- Comply with IEC60896, IEC61427 etc. standard

Application
- Home energy storage system
- Smart power grids and microgrid system
- Distributed energy storage system
- Hybrid energy storage system such as solar and wind
- Solar power generation grid/off-grid energy storage system
- Emergency lighting system
- Generator and battery hybrid energy system
- Other standby, cycling system

Dimension

Nominal Voltage
- 6V

Typical Weight
- 61kg

Internal Resistance
- Approx 1.35mΩ (acc. to IEC60896-21 clause 6.3)

Short-Circuit Current
- 50A

Self Discharge
- Residual capacity is above 90% after 90 days storage (25°C)

Temperature Ranges
- Operation (recommended): 15°C~25°C
- Operation (maximum): -20°C~50°C

Max. charging current
- 75A

Charge Voltage
- Floating: 2.25V/cell (25°C)
- Equalizing/Cycle: 2.30V/cell (25°C)

Terminal
- M8 embedded copper

Terminal Hardware Torque
- >10N.m

Constant Current Discharge Characteristics

<table>
<thead>
<tr>
<th>End voltage per cell</th>
<th>60min</th>
<th>3hour</th>
<th>5hour</th>
<th>8hour</th>
<th>10hour</th>
<th>24hour</th>
<th>48hour</th>
<th>72hour</th>
<th>120hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75V</td>
<td>150.80</td>
<td>69.33</td>
<td>48.13</td>
<td>33.73</td>
<td>25.61</td>
<td>12.52</td>
<td>6.47</td>
<td>4.43</td>
<td>2.81</td>
</tr>
<tr>
<td>1.80V</td>
<td>141.20</td>
<td>67.20</td>
<td>47.07</td>
<td>33.07</td>
<td>25.00</td>
<td>12.32</td>
<td>6.32</td>
<td>4.33</td>
<td>2.75</td>
</tr>
<tr>
<td>1.83V</td>
<td>132.27</td>
<td>65.07</td>
<td>45.87</td>
<td>32.53</td>
<td>24.51</td>
<td>12.05</td>
<td>6.19</td>
<td>4.24</td>
<td>2.69</td>
</tr>
<tr>
<td>1.85V</td>
<td>127.47</td>
<td>63.73</td>
<td>45.47</td>
<td>32.13</td>
<td>24.27</td>
<td>11.91</td>
<td>6.16</td>
<td>4.21</td>
<td>2.67</td>
</tr>
<tr>
<td>1.88V</td>
<td>122.13</td>
<td>62.40</td>
<td>44.93</td>
<td>31.73</td>
<td>24.15</td>
<td>11.80</td>
<td>6.11</td>
<td>4.17</td>
<td>2.65</td>
</tr>
<tr>
<td>1.90V</td>
<td>113.20</td>
<td>59.73</td>
<td>43.73</td>
<td>30.93</td>
<td>23.54</td>
<td>11.65</td>
<td>5.95</td>
<td>4.07</td>
<td>2.59</td>
</tr>
</tbody>
</table>

Discharge Data with Constant Power

<table>
<thead>
<tr>
<th>End voltage per cell</th>
<th>15min</th>
<th>30min</th>
<th>1hour</th>
<th>2hour</th>
<th>3hour</th>
<th>4hour</th>
<th>5hour</th>
<th>6hour</th>
<th>8hour</th>
<th>10hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75V</td>
<td>769.1</td>
<td>549.3</td>
<td>302.1</td>
<td>178.5</td>
<td>137.3</td>
<td>109.9</td>
<td>93.4</td>
<td>82.4</td>
<td>64.5</td>
<td>54.9</td>
</tr>
<tr>
<td>1.80V</td>
<td>757.9</td>
<td>541.3</td>
<td>297.7</td>
<td>175.9</td>
<td>135.3</td>
<td>108.3</td>
<td>92.0</td>
<td>81.2</td>
<td>63.6</td>
<td>54.1</td>
</tr>
<tr>
<td>1.83V</td>
<td>742.9</td>
<td>530.7</td>
<td>291.9</td>
<td>172.5</td>
<td>132.7</td>
<td>106.1</td>
<td>90.2</td>
<td>79.6</td>
<td>62.4</td>
<td>53.1</td>
</tr>
<tr>
<td>1.85V</td>
<td>728.1</td>
<td>520.0</td>
<td>286.0</td>
<td>169.0</td>
<td>130.0</td>
<td>104.0</td>
<td>88.4</td>
<td>78.0</td>
<td>61.1</td>
<td>52.0</td>
</tr>
<tr>
<td>1.88V</td>
<td>709.3</td>
<td>506.7</td>
<td>278.7</td>
<td>164.7</td>
<td>126.7</td>
<td>101.3</td>
<td>86.1</td>
<td>76.0</td>
<td>59.5</td>
<td>50.7</td>
</tr>
</tbody>
</table>